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Abstract—Chaotic systems are widely studied in various re-
search areas such as signal processing and secure communication.
Existing chaotic systems may have drawbacks such as discontin-
uous chaotic ranges and incomplete output distributions. These
drawbacks may lead to the defects of some chaos-based appli-
cations. To accommodate these challenges, this paper proposes a
two-dimensional (2D) modular chaotification system (2D-MCS) to
improve the chaos complexity of any 2D chaotic map. Because
the modular operation is a bounded transform, the improved
chaotic maps by 2D-MCS can generate chaotic behaviors in
wide parameter ranges while existing chaotic maps cannot. Three
improved chaotic maps are presented as typical examples to
verify the effectiveness of 2D-MCS. The chaos properties of
one example of 2D-MCS are mathematically analyzed using
the definition of Lyapunov exponent. Performance evaluations
demonstrate that these improved chaotic maps have continuous
and large chaotic ranges, and their outputs are distributed more
uniformly than the outputs of existing 2D chaotic maps. To show
the application of 2D-MCS, we apply the improved chaotic maps
of 2D-MCS to secure communication. The simulation results show
that these improved chaotic maps exhibit better performance
than several existing and newly developed chaotic maps in terms
of resisting different channel noise.

Index Terms—Chaotic system, chaotic signal, chaotification,
dynamical system, secure communication

I. INTRODUCTION

IN the past few decades, nonlinear systems have received
intensive attentions of researchers [1]–[3] and been applied

to many application fields [4], [5]. As a branch of nonlinear
science, chaos theory focuses on the behaviors that have sensi-
tive dependence on initial states, for example, the well-known
butterfly effect [6]. A chaotic system is a mathematical model
to describe the chaotic behaviors. For a given initial state, a
chaotic system is deterministic [7]. However, its trajectories
are unpredictable when the initial state is unknown [8]. With
this characteristic, a chaotic system can obtain many natural
properties, including initial state sensitivity, topological tran-
sitivity and unpredictability [9], [10]. Such useful properties
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make chaotic systems widely applied to many engineering
applications [11], [12], such as signal detection [13], [14] and
secure communication [15]–[17].

However, with the fast development of computer technology
and artificial intelligence, studies have established that some
valuable information about the chaotic systems or their chaotic
signals can be deduced according to little information of the
systems [18]–[20]. These studies mainly focus on identifying
the mathematical definitions of chaotic systems [21], [22],
or on estimating their initial states [23], [24] and chaotic
signals under some conditions [25]. For example, a hybrid
regularized echo state network was introduced to predict
the multivariate chaotic signals using the past observation
states [26]. Generally, chaotic systems easily have above situ-
ations if they have drawbacks in discontinuous chaotic ranges
and incomplete output distributions [27]. If some valuable
information about the equation or chaotic signal of a chaotic
system can be estimated, the system may lose the essential
properties of chaos and this may cause negative impacts on
its applications [28], [29].

As reviewed in [30], many works have been devoted to
addressing the weaknesses of existing chaotic systems [31],
[32]. One widely used strategy is to improve the complexity
of chaotic signals via disturbing their system parameters [33]
or via directly interfering their chaotic signals [34], [35] using
some noise or random numbers. For example, Chen et al.
use noise to scramble the output states of modified Logistic
map in [36]. This method can obtain chaotic signals with high
randomness. However, this strategy of improving the com-
plexity of chaotic signals has some weaknesses. First, some
technologies of this strategy use random numbers to scramble
chaotic signals. In many applications, chaotic systems are
used to generate pseudorandom numbers [27]. Improving the
complexity of chaotic signals in these applications makes no
sense if we have already obtained random numbers [36].
Second, when the output states of a chaotic system are
disturbed using noise or random numbers, the integrity of
its mathematical models may be broken. This may make the
chaotic system lose some natural properties. Another effective
strategy aims at improving the chaos complexity of existing
chaotic systems [37] or at generating new chaotic systems with
more complex chaotic behaviors [38]. For example, in [39],
Zhou et al. introduced a chaotic framework to produce new
chaotic maps using two existing chaotic maps as seed maps.
Experimental results show that the new chaotic maps generated
by this framework have much better performance than some
existing maps. However, most efforts of this strategy focus
only on one-dimensional chaotic systems. Few works have
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been devoted to improving the chaos complexity of two-
dimensional (2D) or high-dimensional (HD) chaotic systems.

This paper introduces a 2D modular chaotification system
(2D-MCS) to improve the chaos complexity of any 2D chaotic
map. Many existing 2D chaotic maps have quite narrow chaot-
ic ranges because their phase planes will become uncompacted
with the increase of their system parameters. However, 2D-
MCS performs a modular operation to the outputs of system
in each unit time and can always compact the phase plane.
As a result, 2D-MCS can significantly improve the chaos
complexity and enlarge the chaotic ranges of existing 2D
chaotic maps. The main contributions of this work can be
summarized as follows.

1) We propose the 2D-MCS as a general chaotification
framework to improve the chaos complexity of any 2D
chaotic map. To demonstrate the effectiveness of 2D-
MCS, as examples, we use this framework to enhance
the chaos complexity of three existing 2D chaotic maps.

2) The chaos properties of one example of 2D-MCS are
mathematically analyzed using the definition of Lya-
punov exponent. Property studies show that these im-
proved chaotic maps of 2D-MCS have fully distributed
trajectories, and can display robust chaotic behaviors in a
large parameter range whereas the existing maps cannot.

3) We quantitatively evaluate these improved chaotic maps
using Lyapunov exponent, sample entropy, joint en-
tropy and correlation dimension. The evaluation results
demonstrate their complex chaotic behaviors.

4) To investigate the application of 2D-MCS, we apply
these improved chaotic maps to secure communication.
The simulation results demonstrate that these maps show
better performance in resisting different channel noise
than several existing and new chaotic maps.

The rest of this paper is organized as follows. Section II
reviews three existing 2D chaotic maps. Section III introduces
the proposed 2D-MCS and studies three cases of improved
chaotic maps of 2D-MCS. Section IV evaluates the perfor-
mance of these improved chaotic maps. Section V investigates
the application of the improved chaotic maps in secure com-
munication and Section VI concludes this paper.

II. EXISTING 2D CHAOTIC MAPS

This section briefly introduces three 2D chaotic maps and
analyzes their properties. These maps are used as examples to
show the effectiveness of 2D-MCS in Section III-B.

The Hénon map{
xn+1 = 1− ax2

n + yn

yn+1 = bxn,
(1)

is named after Michel Hénon in 1976 [1], where a and b are
its system parameters. The Hénon map is used as a prototype
of 2D chaotic systems and it demonstrates classical chaotic
behaviors when a = 1.4 and b = 0.3.

In [40], Zeraoulia and Sprott designed a simple 2D chaotic
map, called the Zeraoulia-Sprott map,{

xn+1 = −axn/(1 + y2
n)

yn+1 = xn + byn,
(2)

(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)
Fig. 1: Bifurcation diagrams and trajectories of three existing 2D chaotic maps.
(a)-(c) Hénon map’s bifurcation diagrams under a = 1.4 and b ∈ (−0.5, 0.5),
and its trajectory under (a, b) = (1.4, 0.3); (d)-(f) Zeraoulia-Sprott map’s
bifurcation diagrams under a = 3.8 and b ∈ (−1.5, 1.5), and its trajectory
under (a, b) = (3.8, 0.6); (g)-(i) Duffing map’s bifurcation diagrams under
a = 2.75 and b ∈ (−0.5, 0.5), and its trajectory under (a, b) = (2.75, 0.2).

where a and b are its system parameters. The Zeraoulia-Sprott
map is characterized by one rational fraction and it shows
classical chaotic behaviors when a = 3.8 and b = 0.6.

The Duffing map, also called Holmes map, is a widely
used dynamical system of displaying chaotic behaviors [41].
Mathematically, the Duffing map is defined as{

xn+1 = yn

yn+1 = −bxn + ayn − y3
n,

(3)

where a and b are system parameters. When a = 2.75 and
b = 0.2, the Duffing map shows classical chaotic behaviors.

The bifurcation diagram and trajectory of a dynamical sys-
tem plot its visited or asymptotically visited states in the phase
plane. They can reflect the behaviors of a dynamical system.
Fig. 1 shows the bifurcation diagrams and trajectories of the
Hénon, Zeraoulia-Sprott and Duffing maps. To better show the
observation results, we plot their bifurcation diagrams with
the change in the parameter b, and set the other parameter
a as a fixed value that can make the corresponding chaotic
map achieve classical chaotic behaviors. The parameters for
generating the trajectories are also set as the values that can
make the corresponding chaotic map achieve classical chaotic
behaviors. For the Duffing map, as the state of variable x
in next iteration equals to the current state of variable y, the
bifurcation diagrams for variables x and y are the same, which
can be seen from Figs. 1 (g) and (h).
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From the mathematical equations, bifurcation diagrams and
trajectories, one can observe that the Hénon, Zeraoulia-Sprott
and Duffing maps have many notable properties. First, their
chaotic ranges are discontinuous and even isolated. Small
changes to their system parameters may shift the parameters
into nonchaotic ranges. Second, their outputs distribute incom-
pletely. Their trajectories only visit a small area of the phase
plane and have prominent patterns. Moreover, their chaotic
ranges are quite narrow. This means that they have chaotic
behaviors only in limited parameter ranges. These properties
may produce drawbacks in some chaos-based application-
s [29], [42]. Thus, overcoming these drawbacks of existing
chaotic maps can promote chaos-based applications and is a
meaningful research topic.

III. TWO-DIMENSIONAL MODULAR CHAOTIFICATION
SYSTEM

This section presents the two-dimensional modular chaotifi-
cation system (2D-MCS), studies three examples of improved
chaotic map by 2D-MCS and analyzes their chaos properties.

A. 2D-MCS

The 2D-MCS is proposed to accommodate the weaknesses
of existing 2D chaotic maps in discontinuous, narrow chaotic
ranges and incomplete output distributions. Using a modular
operation as a bounded transformation and applying it to the
outputs of an 2D chaotic map, the 2D-MCS can strongly
improve the chaos complexity of such 2D chaotic map. The
2D-MCS can be represented as

M(x, y) = F(x, y) mod N, (4)

where x and y are two variables, the modulus coefficient N
is a positive integer, and F(x, y) is a 2D chaotic map

F(x, y) :

{
xn+1 = G(xn, yn)

yn+1 = H(xn, yn).
(5)

The iteration form of 2D-MCS in Eq. (4) can be written as

M(x, y) :

{
xn+1 = G(xn, yn) mod N

yn+1 = H(xn, yn) mod N.
(6)

Many existing chaotic maps have chaotic behaviors only
in small parameter ranges and cannot display chaos when
their parameters increase to large values. This is because
with the increase of their parameters, their phase planes
will become uncompacted. This leads their output values to
diverge to infinity with the evolution of the systems. However,
2D-MCS can always compact the phase plane because its
modular operation is a bounded operation and can transform
any input value into the range [0, N). Such property makes
the modular operation a natural candidate for improving the
chaos complexity of chaotic maps. As a result, 2D-MCS can
achieve the following properties. (1) It can greatly enlarge the
chaotic ranges of existing chaotic maps. (2) It can generate
robust chaotic behaviors in wide parameter ranges that existing
chaotic maps show regular behaviors or even diverge. (3) As
the 2D-MCS can increase the complexity of 2D chaotic maps,

the improved chaotic maps of 2D-MCS can generate outputs
with full distributions in the phase plane.

B. Examples of 2D-MCS

To demonstrate the effectiveness of 2D-MCS, as examples,
this section uses 2D-MCS to enhance the three 2D chaotic
maps in Section II and studies the dynamics properties of the
improved chaotic maps.

1) Improved Hénon Map: When applying 2D-MCS to
improve the complexity of the Hénon map in Eq. (1), we can
obtain the improved Hénon map as{

xn+1 = (1− âx2
n + yn) mod N

yn+1 = b̂xn mod N,
(7)

where â and b̂ are its two system parameters.
2) Improved Zeraoulia-Sprott Map: When using the

Zeraoulia-Sprott map in Eq. (2) as F(x, y) in Eq. (4), we can
obtain the improved Zeraoulia-Sprott map as{

xn+1 = −âxn/(1 + y2
n) mod N

yn+1 = (xn + b̂yn) mod N,
(8)

where â, b̂ are its two system parameters.
3) Improved Duffing Map: When applying 2D-MCS to the

Duffing map in Eq. (3), one obtains the improved Duffing map{
xn+1 = yn mod N

yn+1 = (−b̂xn + âyn − y3
n) mod N,

(9)

where â, b̂ are its two system parameters.
The modulus coefficient N should be a positive integer and

this work sets N = 5 in the examples of improved chaotic
map. The two system parameters â, b̂ in these improved
chaotic maps inherit from the parameters a, b in the original
chaotic maps. The parameters a, b of these original chaotic
maps have only narrow ranges. This is because the outputs
of the chaotic maps will quickly diverge to infinity with the
system evolution when their parameters are set as large values.
However, as the modular operation in 2D-MCS is a bounded
operation, the improved chaotic maps by 2D-MCS can always
compact the phase plane. As a result, the two parameters â, b̂
in these improved chaotic maps can be any value. This work
investigates the properties of these improved chaotic maps
for the parameters â, b̂ ∈ [5, 100]. One is flexible to set the
modular coefficient N as other integers and set the system
parameters â, b̂ as other data ranges.

C. Proof of Chaos

The Lyapunov exponent (LE) is a widely used indictor to
prove the existence of chaos [43]. It measures the average
divergence rate of two trajectories of a dynamical system
starting from extremely close initial states. This work uses the
definition of LE to prove the chaos of 2D-MCS. Because the
definition of LE focuses on a dynamical system with specific
expression, we take the improved Hénon map as an example
of 2D-MCS. First, we give the definition of chaos in the sense
of LE as Definition 1 [44].
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Definition 1. A dynamical system is chaotic in the sense of
LE if it satisfies two conditions: 1) its phase plane is globally
bounded; 2) it has at least one positive LE.

If the dynamical system has more than one positive LE,
it can acquire hyperchaotic behavior. The n LEs of an n-
dimensional discrete-time dynamical system at initial state x0

can be calculated as [43]

LEi = lim
k→∞

1

k
ln γi (Φk) , i = 1, 2, · · · , n (10)

where γi(Φk) is the i-th eigenvalue of matrix Φk, Φk =
J(x0)J(x1) · · ·J(xk−1), and J(xj) is the Jacobian matrix of
the dynamical system at observation time j.

Suppose a 2D map

F (x, y) =

(
f(x, y)

g(x, y)

)
mod N

consists of two continuous maps f(x, y) and g(x, y). The
F (x, y) is discontinuous on the square [0, N ]×[0, N ], because
the modular operation is a jump operation to obtain the
remainder part. However, if a closed torus can be constructed
by F (x, y) with [0, N ]× [0, N ], the F (x, y) is continuous on
the torus (e.g. Chapter 2.7 on Page 93 of [45]). Fig. 2 shows the
construction of torus by identifying the two pairs of opposite
sides of the square. One can observe that a closed torus can
be constructed when the left side align with the right side and
the top side align with the bottom side. This indicates that the
F (x, y) is continuous on the torus if F (0, y) = F (N, y) and
F (x, 0) = F (x,N).

Fig. 2: Construction of a closed torus in two steps. (a) The square with size
[0, N ] × [0, N ]; (b) Glue together the vertical sides; (c) Glue together the
horizontal sides.

A well-known example of such system is the Cat map.
According to the discussions in Chapter 2.7 on Page 93 of [45],

the Cat map
(
xn+1

yn+1

)
=

(
2xn + yn
xn + yn

)
mod 1 is continu-

ous on a torus. This is because its values (xn+1, yn+1) ∈
[0, 1]× [0, 1] satisfy that F (0, yn) = F (1, yn) and F (xn, 0) =
F (xn, 1), and a closed torus of unit size can be constructed.
Then, the Cat map is differentiable on the torus and its

Jacobian matrix JCat =

(
2 1

1 1

)
(e.g. Page 197 of [45] and

Page 316 of [46]). According to many literatures (e.g. Page
198 of [45]), the Cat map can satisfy the requirements of
Definition 1 and it thus has chaotic behaviors on the torus.
A modular system is chaotic if it has chaotic behavior on the
torus (Page 198 of [47]).

For the improved Hénon map in Eq. (7) with values
(xn+1, yn+1) ∈ [0, N ]× [0, N ], when its control parameters â
and b̂ are integers, it also satisfies that F (0, yn) = F (N, yn)
and F (xn, 0) = F (xn, N). Then, a closed torus of size N can
be constructed and the improved Hénon map is continuous on
it. Since the torus constructed by the improved Hénon map is
closed and smooth, the left partial derivative of the improved
Hénon map always equals to its right partial derivative on
(0, N).

We introduce Proposition 1 that the improved Hénon map
has chaotic behavior on the torus under specific parameter
settings.

Proposition 1. The improved Hénon map in Eq. (7) with
integer control parameters â and b̂ has chaotic behavior on
the torus if its parameter b̂ satisfy that |b̂| > 1, and it has
hyperchaotic behavior if its control parameters â and b̂ satisfy
that |b̂| > 1 and â = 0.

Proof: Because the modular operation in the improved
Hénon map is a bounded operation, the phase plane of the
improved Hénon map is globally bounded. Then the condition
1) of Definition 1 is satisfied.

For the integer control parameters â and b̂, the improved
Hénon map is continuous on the torus and its Jacobian matrix
can be derived as

J =

(
−2âx 1

b̂ 0

)
,

which is the same to that of the Hénon map in Eq. (1) with
parameters a and b,

JHénon =

(
−2ax 1
b 0

)
.

Although the improved Hénon map and Hénon map have the
same format of Jacobian matrix, their Jacobian matrix values
are completely different due to the following two reasons.
(1) Their output states are different; (2) Their parameters are
different. The parameters â and b̂ of the improved Hénon map
can be any large values because the modular operation is a
bounded operation, whereas the parameters a and b of the
Hénon map have only narrow ranges because its output states
will quickly diverge to infinity with large parameter values.

The multiplications of the Jacobian matrices of the improved
Hénon map from observation time 0 to observation time k−1
can be calculated as

Φk = J(x0)J(x1) · · ·J(xk−1)

=

(
−2âx0 1

b̂ 0

)(
−2âx1 1

b̂ 0

)
· · ·
(
−2âxk−1 1

b̂ 0

)
(11)

Let γ1(Φk) and γ2(Φk) be the two eigenvalues of Φk. Ac-
cording to the calculation of LE in Eq. (10), the two LEs of
the improved Hénon map are

LE1 = lim
k→∞

1

k
ln γ1 (Φk) , LE2 = lim

k→∞

1

k
ln γ2 (Φk) . (12)

Let the two eigenvalues of the matrix J(xj) be γ1(J(xj)) and
γ2(J(xj)) (j = 0, 1, · · · , k− 1). Since the determinant of the
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Jacobian matrix J(xj) equals to −b̂, one can obtain

det(J(xj)) = γ1(J(xj)) · γ2(J(xj)) = −b̂. (13)

According to the properties of linear algebra,
det(A1A2 · · ·An) = det(A1)det(A2) · · · det(An) if
A1,A2, · · · ,An are square matrices with the same size [48].
Then combining Eqs. (11) and (13), one gets

det(Φk) = γ1(Φk) · γ2(Φk)

= det(J(x0)) · det(J(x1)) · · · det(J(xk−1))

= (−b̂)k.
(14)

Combining with Eq. (12), one can obtain that

LE1 + LE2 = lim
k→∞

1

k
ln γ1 (Φk) + lim

k→∞

1

k
ln γ2 (Φk)

= lim
k→∞

1

k
ln (γ1 (Φk) · γ2 (Φk))

= lim
k→∞

1

k
ln(−b̂)k

= ln(−b̂).

(15)

It is obvious that when |b̂| > 1, LE1 + LE2 > 0. Then at
least one of LE1 and LE2 is positive. Notice that when the
obtained LE value is a complex number, the LE is the real part,
since the divergence of two close trajectories of a dynamical
system is decided by the real part of the complex number [49],
[50]. Then the condition 2) of Definition 1 is satisfied and the
improved Hénon map has chaotic behavior.

Specially, when |b̂| > 1 and â = 0, the Jacobian matrix of
the improved Hénon map becomes

J̃ =

(
0 1

b̂ 0

)
,

which is a constant matrix. Let γ1 and γ2 be the two eigen-
values of J̃. One can obtain that γ1 =

√
b̂ and γ2 = −

√
b̂.

Eq. (11) can be rewritten as

Φk = J(x0)J(x1) · · ·J(xk−1) = J̃k =

(
0 1

b̂ 0

)k
.

According to the properties of linear algebra, if λ1 and λ2 are
the two eigenvalues of the 2×2 matrix A, the two eigenvalues
of An are λn1 and λn2 [48]. As γ1(Φk) and γ2(Φk) are the two
eigenvalues of Φk, one can obtain that

γ1(Φk) = γk1 = (
√
b̂)k, γ2(Φk) = γk2 = (−

√
b̂)k.

Combining with Eq. (12), one obtains that LE1 = ln(
√
b̂)

and LE2 = ln(−
√
b̂). Since |b̂| > 1, both of the LE1 and

LE2 are larger than 0. Notice that when the obtained LE
value is a complex number, the LE is the real part [49],
[50]. This indicates that the improved Hénon map has two
positive LEs and can achieve hyperchaotic behavior. The proof
is completed.

D. Stability

A fixed point is an element of a function domain that
maps to itself by the function. For example, v is a fixed

point of f(·) if f(f(· · · f(v) · · · )) = v. The fixed points of
the improved Hénon, improved Zeraoulia-Sprott and improved
Duffing maps, denoted as (x̃, ỹ), are the solutions of the
following 2D equations:{

x̃ = (1− âx̃2 + ỹ) mod 5

ỹ = b̂ỹ mod 5,{
x̃ = −âx̃/(1 + ỹ2) mod 5

ỹ = (x̃+ b̂ỹ) mod 5,

and {
x̃ = ỹ mod 5

ỹ = (−b̂x̃+ âỹ − ỹ3) mod 5,

respectively.
A fixed point of a dynamical system could be stable or

unstable. A stable fixed point indicates that the states closing
to the fixed point are attracted and the system is stationary in
the long-term evolution. An unstable fixed point indicates that
the fixed point rejects the closing states and that the system
oscillates. The stability of a fixed point is determined by the
system’s gradient at the point. A 2D dynamical system has
two gradients indicated by the two eigenvalues of its Jacobian
matrix. Supposing that γ1 and γ2 are the two eigenvalues of the
Jacobian matrix of a 2D dynamical system at a fixed point,
the fixed point is locally stable if |γ1| < 1 and |γ2| < 1,
and is unstable if |γj | > 1 for j = 1 or 2 [40]. Because
the iterative values are with infinite precision, the Jacobian
matrices of the improved Hénon, improved Zeraoulia-Sprott
and improved Duffing maps are calculated as

J(x, y) =

(
−2âx 1

b̂ 0

)
,

J(x, y) =

(
−â/(1 + y2) 2âxy/(1 + y2)2

1 b̂

)
,

and

J(x, y) =

(
0 1

−b̂ â− 3y2

)
,

respectively.
Tables I, II and III list the fixed points and their absolute

eigenvalues of the Jacobian matrices for the improved Hénon,
improved Zeraoulia-Sprott and improved Duffing maps, re-
spectively. One can see that these improved chaotic maps have
different numbers of fixed points for different parameter set-
tings. For all the fixed points, at least one absolute eigenvalue
of the corresponding Jacobian matrix is larger than one. This
implies that all the fixed points of the improved maps under
these parameter settings are unstable.

Fig. 3 shows the bifurcation diagrams of the improved
Hénon, improved Zeraoulia-Sprott and improved Duffing maps
for (â, b̂) ∈ [5, 100] and their trajectories under the parameter
setting (â, b̂) = (50, 50). As shown in Fig. 1, the Hénon,
Zeraoulia-Sprott and Duffing maps have chaotic behaviors
only within limited parameter ranges. With the change of
parameters, these chaotic maps will step into chaotic states
from regular states and can show how the systems route to
chaos. Besides, the trajectories of these existing chaotic maps
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TABLE I: Improved Hénon map’s fixed points and the absolute eigenvalues
of its Jacobian matrix at the fixed points.

(â, b̂) Fixed points (x̃, ỹ) Absolute eigenvalues of J(x̃, ỹ)

(5, 5)

(3.1130, 0.5660) |γ1| = 31.2898, |γ2| = 0.1598
(2.2330, 1.1650) |γ1| = 22.5517, |γ2| = 0.2217
(2.4880, 2.4390) |γ1| = 25.0794, |γ2| = 0.1994
(4.8000, 4.0000) |γ1| = 48.1039, |γ2| = 0.1039

(5, 6)
(1.7040, 0.2230) |γ1| = 17.3851, |γ2| = 0.3451
(1.1710, 2.0270) |γ1| = 12.2017, |γ2| = 0.4917

(6, 5)
(4.2420, 1.2100) |γ1| = 51.0020, |γ2| = 0.0980
(4.9280, 4.6400) |γ1| = 59.2004, |γ2| = 0.0844

...
...

...

TABLE II: Improved Zeraoulia-Sprott map’s fixed points and the absolute
eigenvalues of its Jacobian matrix at the fixed points.

(â, b̂) Fixed points (x̃, ỹ) Absolute eigenvalues of J(x̃, ỹ)

(5, 5)

(3, 0.5) |γ1| = 4.9635, |γ2| = 5.9635
(2.2680, 0.6830) |γ1| = 4.1930, |γ2| = 5.7835
(3.9610, 1.5100) |γ1| = 2.2872, |γ2| = 5.7629
(2.3990, 1.9000) |γ1| = 1.4187, |γ2| = 5.3341
(3.2850, 2.9290) |γ1| = 0.7058, |γ2| = 5.1838
(3.8760, 4.0310) |γ1| = 0.3873, |γ2| = 5.0975

(5, 6)

(1.1990, 0.7600) |γ1| = 3.5527, |γ2| = 6.3833
(4.5600, 1.0880) |γ1| = 3.3968, |γ2| = 7.1072
(2.0650, 1.5870) |γ1| = 1.7621, |γ2| = 6.3410
(3.9460, 4.2110) |γ1| = 0.3416, |γ2| = 6.0747

(6, 5)
(2.7150, 0.5710) |γ1| = 5.5295, |γ2| = 6.0048
(1.2030, 0.9490) |γ1| = 3.5980, |γ2| = 5.4411
(4.7120, 1.3220) |γ1| = 3.3670, |γ2| = 6.1834

...
...

...

TABLE III: Improved Duffing map’s fixed points and the absolute eigenvalues
of its Jacobian matrix at the fixed points.

(â, b̂) Fixed points (x̃, ỹ) Absolute eigenvalues of J(x̃, ỹ)

(5, 5)

(1.5160, 1.5160) |γ1| = 2.2361, |γ2| = 2.2361
(2, 2) |γ1| = 0.8074, |γ2| = 6.1926
(3, 3) |γ1| = 0.2297, |γ2| = 21.7703

(4.3210, 4.3210) |γ1| = 0.0982, |γ2| = 50.9149

(5, 6)

(1.3280, 1.3280) |γ1| = 2.4495, |γ2| = 2.4495
(1.8480, 1.8480) |γ1| = 1.6955, |γ2| = 3.5387
(2.8930, 2.8930) |γ1| = 0.3029, |γ2| = 19.8054
(3.8550, 3.8550) |γ1| = 0.1522, |γ2| = 39.4309
(4.4980, 4.4980) |γ1| = 0.1079, |γ2| = 55.5881

(6, 5)

(0.1710, 0.1710) |γ1| = 1.0226, |γ2| = 4.8897
(1.7100, 1.7100) |γ1| = 2.261, |γ2| = 2.2361
(2.1550, 2.1550) |γ1| = 0.6918, |γ2| = 7.2273
(2.9240, 2.9240) |γ1| = 0.2578, |γ2| = 19.3915
(3.5560, 3.5560) |γ1| = 0.1572, |γ2| = 31.7995
(3.6840, 3.6840) |γ1| = 0.1446, |γ2| = 34.5709
(3.9140, 3.9140) |γ1| = 0.1255, |γ2| = 39.8562
(4.5620, 4.5620) |γ1| = 0.0887, |γ2| = 56.3742
(4.8620, 4.8620) |γ1| = 0.0771, |γ2| = 64.8692

...
...

...

can visit only a small region in the phase plane and thus
have strange behaviors. However, as can be seen from Fig. 3,
variables x and y in the improved chaotic maps can randomly
visit the entire regions of phase plane under all given parameter
settings. Thus these improved chaotic maps do not have the
parameter settings that make the chaotic maps step into chaotic
states from regular ranges, and cannot exhibit how to route
to chaos. In addition, the outputs of these improved chaotic
maps can randomly distribute on the whole phase plane. This
indicates that these improved chaotic maps can achieve robust
chaotic behaviors. From this viewpoint, the improved chaotic
maps by 2D-MCS have more complex chaotic behaviors and
much larger chaotic ranges than the original chaotic maps.
With uniformly distributed outputs, the improved chaotic maps
are suitable for many applications such as the pseudo-random
number generator.

(a)

(d)

(g)

(b)

(e)

(h)

(c)

(f)

(i)
Fig. 3: Bifurcation diagrams and trajectories of (a)-(c) the improved Hénon
map, (d)-(f) the improved Zeraoulia-Sprott map, and (g)-(i) the improved
Duffing map.

IV. PERFORMANCE EVALUATIONS

This section quantitatively evaluates the chaotic behaviors of
the three improved chaotic maps by 2D-MCS. The evaluations
are performed from four aspects: LE, sample entropy (SE),
joint entropy (JE) and correlation dimension (CD).

A. LE

As mentioned in Section III-C, the LE measures the average
divergence rate of two trajectories of a dynamical system
starting from extremely close initial states. A positive LE
indicates that the two trajectories exponentially diverge in each
unit time and thus the dynamical system is sensitive to initial
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(a)

(c)

(e)

(b)

(d)

(f)
Fig. 4: Two LEs of different 2D chaotic maps. (a) Hénon map; (b) improved Hénon map; (c) Zeraoulia-Sprott map; (d) improved Zeraoulia-Sprott map; (e)
Duffing map; (f) improved Duffing map.

states. Thus, a positive LE is an indicator of chaos if the phase
plane of the dynamical system is compacted, and a larger LE
indicates a higher sensitivity to initial states [44]. If a system
has several positive LEs, its close trajectories diverge in several
directions, making the system achieve hyperchaotic behaviors.
The hyperchatic behavior is a more complex dynamic behavior
than the chaotic behavior.

Our experiments use the LE calculation toolbox LET1 to
calculate the LEs of chaotic maps and Fig. 4 plots the calculat-
ed LEs of the improved and existing 2D chaotic maps. One can
observe that the three improved chaotic maps not only have
positive LEs in all the parameter settings, but also can obtain
two positive LEs in large parameter regions. In particularly,
the improved Zeraoulia-Sprott maps have two positive LEs
almost in the whole parameter ranges. As comparison, the
Hénon, Zeraoulia-Sprott and Duffing maps obtain positive LEs
only in small parameter ranges, and their chaotic ranges are
discontinuous or even isolated. Besides, the improved chaotic
maps have much larger LEs than the existing maps. Fig. 4 plots
the two LEs of the improved chaotic maps only within the
parameter range [5, 100]. These improved chaotic maps always
have positive LEs when their system parameters increase to
any large value. This indicates that 2D-MCS can significantly
enlarge the chaotic ranges and improve the chaos complexity
of existing 2D chaotic maps.

1https://ww2.mathworks.cn/matlabcentral/fileexchange/233-let?
requestedDomain=zh

B. SE
The SE can measure the degree of complexity of a time

series [51]. A larger positive SE means the lower regularity of
the time series. When the measured time series are generated
by a chaotic system, the larger positive SE indicates the higher
complexity of the system.

When calculating the SEs of different chaotic maps, our
experiments set m as 2 and r as 0.2 × std, where std is the
standard deviation of the time series, in accordance with [51].
Fig. 5 plots the SEs of the three improved 2D chaotic maps and
three existing chaotic maps with different parameter settings.
One can observe that the improved chaotic maps can always
generate time series with positive SEs and their generated SEs
are much larger than the SEs of time series generated by the
existing chaotic maps. These results are consistent with the LE
experiment results in Fig. 4 and prove that the three improved
chaotic maps have high dynamic complexity.

C. JE
The JE characterizes the uncertainty and randomness of

several signals. For a set of signals {S1, S2, · · · , SK} with
M states in each signal, the JE is defined as

H(S1S2 · · ·SK) = −
M∑
i1=1

M∑
i2=1

· · ·
M∑

iK=1

P (bi1bi2 · · · biK )

log2 P (bi1bi2 · · · biK ),
(16)
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(a)

(c)

(e)

(b)

(d)

(f)
Fig. 5: SEs of the time series generated by different 2D chaotic maps. (a)
Hénon map; (b) improved Hénon map; (c) Zeraoulia-Sprott map; (d) improved
Zeraoulia-Sprott map; (e) Duffing map; (f) improved Duffing map.

where bij is a state of the jth signal Sj and P (bi1bi2 · · · biK )
is the joint probability of the K signals.

Here, we use the JE to test the uncertainty and random-
ness of the two signals X = {x1, x2, · · · , xn} and Y =
{y1, y2, · · · , yn} generated by a 2D chaotic map. The JE
H(XY ) is a positive value and its theoretical maximum can
be achieved when the two signals X and Y are absolutely
random and independent. This means that the joint probabil-
ities are the multiplications of the probabilities of states, and
each signal has the equal probability at each state, namely
P (bi1bi2) = P (bi1)P (bi2), and P (bi1) = P (bi2) = 1/M .
Thus, the theoretical maximum JE of X and Y with M states,
denoted as H(XY )max, can be obtained as

H(XY )max =−
M∑
i1=1

M∑
i2=1

P (bi1bi2) log2 P (bi1bi2)

=−
M∑
i1=1

M∑
i2=1

P (bi1)P (bi2) log2 (P (bi1)P (bi2))

=−M2(1/M)2(−2 log2M)

=2 log2M.
(17)

Then, the actual JE of X and Y satisfies 0 < H(XY ) ≤
2 log2M , and a larger JE indicates a higher uncertainty and
randomness of the two signals.

Our experiments compare the JEs of the three improved and

three existing 2D chaotic maps. For each 2D chaotic map, we
set the experiment as follows. 1) randomly generate a group
of initial states, ensuring that the control parameters are within
the chaotic range of the chaotic map; 2) for each of the signal
states M ∈ {21, · · · , 2n, · · · , 28}, iterate the chaotic map and
generate chaotic signals X and Y with length 23×(n+1); 3)
calculate the JEs of X and Y for various signal states; 4) repeat
steps 1) to 3) 10 times to obtain the average JEs. Table IV
lists the average JEs of the three improved and three existing
2D chaotic maps under various signal states. These improved
chaotic maps of 2D-MCS can obtain much larger JEs than
existing chaotic maps and their JEs approach to the maximum
values under various signal states. This indicates that the two
chaotic signals X and Y generated by the improved chaotic
maps have high uncertainty and randomness.

D. Correlation Dimension

The CD is a type of fractal dimension and it can measure
the space dimensionality occupied by a time series [52]. A
dynamical system is considered to have chaos properties if
the CD of its time series is larger than 0, and a larger CD
means a higher occupied space dimensionality of the chaotic
attractors.

(a)

(c)

(e)

(b)

(d)

(f)
Fig. 6: CDs of the time series generated by different 2D chaotic maps. (a)
Hénon map; (b) improved Hénon map; (c) Zeraoulia-Sprott map; (d) improved
Zeraoulia-Sprott map; (e) Duffing map; (f) improved Duffing map.

Our experiments use the nonlinear time series analysis tool
TISEAN 3.0.12 to calculate the CDs of the three improved

2https://www.pks.mpg.de/∼tisean/archive 3.0.0.html
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TABLE IV: Average JEs of two chaotic signals X and Y generated by different 2D chaotic maps.

Number of signal states M
21 22 23 24 25 26 27 28

Hénon map 1.0487 1.9251 3.2136 4.3081 5.4064 6.5075 7.6362 8.7822
Zeraoulia-Sprott map 1.4196 2.5586 3.3279 4.1716 4.9404 5.7235 6.5439 7.2715
Duffing map 1.5125 3.3078 4.4265 5.4888 6.5010 7.4833 8.4878 9.5367
Improved Hénon map 1.9733 3.9769 5.9857 7.9920 9.9949 11.9963 13.9969 15.9971
Improved Zeraoulia-Sprott map 1.9704 3.9776 5.9844 7.9891 9.9918 11.9932 13.9939 15.9942
Improved Duffing map 1.9729 3.9831 5.9878 7.9944 9.9970 11.9985 13.9991 15.9993
H(XY )max 2 4 6 8 10 12 14 16

and existing 2D chaotic maps. Fig. 6 shows the CDs of these
chaotic maps. To make the experiment consistent, the parame-
ter ranges of all chaotic maps are set as the same as those in LE
and SE experiments. As can be observed from the experiment
results, the improved Hénon, improved Zeraoulia-Sprott and
improved Duffing maps can achieve positive CDs in all the
parameter settings, while the existing Hénon, Zeraoulia-Sprott
and Duffing maps have positive CDs only in few parameter
settings. In addition, these improved chaotic maps can obtain
much larger CDs than the existing chaotic maps. These results
are also consistent with the LE experiment results in Fig. 4
and verify that the attractors of the improved chaotic maps of
2D-MCS can occupy a higher space dimensionality than the
attractors of the existing chaotic maps.

V. SECURE COMMUNICATION

With the properties of unpredictability and ergodicity, chaot-
ic systems are widely used to securely transmit data through
various networks [16], [53]. When chaotic systems are used
to transmit data, the distributions of their outputs greatly
affect the performance of resisting transmission bit errors [54].
Because the outputs of the improved chaotic maps by 2D-MCS
can fully distribute on the whole phase plane, these chaotic
maps can exhibit high performance in secure communication.
This section uses the RM-DCSK developed in [54] to demon-
strate the performance of the improved chaotic maps by 2D-
MCS in secure communication.

A. Scheme of RM-DCSK

The RM-DCSK consists of two parts: the transmitter and
receiver. The transmitter first encodes the information bits
using the chaotic sequence to generate transmission signal, and
then sends the transmission signal to the receiver, while the
receiver decodes the received signal to recover the information
bits.

1) Transmitter: The structure of the transmission signal
is shown as Fig. 7. As can be seen, the b2k is the 2kth
information bit, Xk is an M -length chaotic sequence and
Xk = {xi|2kM < i ≤ (2k + 1)M}, where M is a spreading
factor. The information bits are transmitted sequentially in
equal time slots and a frame consists of two slots. For the kth
frame, its first slot is the multiplication of Xk and b2k, and its
second slot is the sum of two components. The first component
is the multiplication of Xk and the sum of b2k+1 and b2k, and

the second component is the next chaotic sequence, namely
Xk+1. Thus, the kth frame of the transmission signal si can
be represented as

si =

{
b2kxi, 2kM < i ≤ (2k + 1)M

b2k+1b2kxi−M + xi, (2k + 1)M < i ≤ 2(k + 1)M,

where the chaotic sample xi satisfies

x(2k+1)M+m = x2(k+1)M+m, ∀k ∈ {0,±1, · · · }. (18)

… …

𝑘 − 1th frame

𝑏2(𝑘−1)𝑿𝑘−1

𝑏2𝑘−1𝑏2(𝑘−1)𝑿𝑘−1+ 𝑿𝑘

𝑏2(𝑘+1)𝑿𝑘+1

𝑏2 𝑘+1 +1𝑏2(𝑘+1)𝑿𝑘+1+ 𝑿𝑘+2

𝑏2𝑘𝑿𝑘

𝑏2𝑘+1𝑏2𝑘𝑿𝑘+ 𝑿𝑘+1

Fig. 7: Transmission signal in RM-DCSK.

Fig. 8 shows the structure of the transmitter. The component
RCG is a chaotic sequence generator, and the frame combi-
nation is implemented using a delay module. As can be seen
from the figure, the transmitter of RM-DCSK has a simple
structure that can encode information bits to be a continuous
signal si.

𝑠𝑖

𝑀 

𝑟𝑖

Delay 
𝑀 

Delay 
𝑀/2 

Delay 
3𝑀/2 

𝑟𝑖−𝑀

Timing 
Synchronization 

𝑟𝑖−𝑀
∗

Decoder 

Threshold 

𝑍𝑛

𝑍2𝑘+1

∑𝑟𝑖𝑟𝑖−𝑀
𝑀

∑𝑟𝑖𝑟𝑖−𝑀
𝑀

𝑏2𝑘 

𝑏2𝑘+1 

DB

Delay 𝑀 

RCG 

𝑏2𝑘+1𝑏2𝑘𝑥𝑖−𝑀 + 𝑥𝑖 

Information bit 𝑏2𝑘

Information bit 𝑏2𝑘+1

𝑏2𝑘𝑥𝑖 

Delay 
𝑀 

Recovered bit 𝑏𝑛 

Fig. 8: Sender of RM-DCSK.

2) Receiver: When receiving the transmission signal from
the transmitter, the receiver can recover the original informa-
tion bits using the correlation of inner frames. Fig. 9 shows
the structure of the receiver. Because signals may be contam-
inated by noise when transmitted in different networks, the
received signal may be different from the transmission signal.
Supposing that the received signal is denoted by ri = si + ξi,
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where ξi is the added noise. The correlator Zn for recovering
bit bn is the sum of the multiplications of ri and its delayed
version ri−M , namely

Zn =

(n+1)M∑
i=nM+1

riri−M .

Thus, the correlator for bit b2k can be calculated as

Z2k =

(2k+1)M∑
i=2kM+1

(si−M + ξi−M )(si + ξi)

=

(2k+1)M∑
i=2kM+1

(b2k−1b2(k−1)xi−2M + xi−M + ξi−M )

× (b2kxi + ξi).

(19)

From Eq. (18), one can obtain that xi−M = xi. Then, the
above equation can be rewritten as

Z2k =

(2k+1)M∑
i=2kM+1

(b2k−1b2(k−1)xi−2M + xi + ξi−M )(b2kxi + ξi)

=b2k

(2k+1)M∑
i=2kM+1

x2
i

+

(2k+1)M∑
i=2kM+1

[b2kb2k−1b2(k−1)xixi−2M + b2kxiξi−M

+ b2k−1b2(k−1)xi−2Mξi + xiξi + ξiξi−M ].
(20)

The former item in the above equation is the useful informa-
tion, while the latter one is the noise component. Generally
speaking, the energy of the noise is much less than the energy
of the useful information. Thus, the sign of Z2k is determined
by the sign of the information bit b2k. The correlator Z2k+1 for
information bit b2k+1 can be obtained similarly. Then, despite
the disturbance caused by the noise, the information bit can
be recovered by

b̂n =

{
1, for Zn > 0

−1, for Zn ≤ 0.
(21)

B. Simulation Results

The used chaotic system in RM-DCSK greatly affects the
system’s performance of resisting channel noise. To demon-
strate the ability of the improved chaotic maps by 2D-MCS
in RM-DCSK, the chaotic sequence generator is selected
as the Hénon, Zeraoulia-Sprott, Duffing, improved Hénon,
improved Zeraoulia-Sprott, improved Duffing, 2D-LSC [55]
and LT [56] maps, respectively. Since additive white Gaussian
noise (AWGN) and additive random noise (ARN) are two
types of common channel noise, we simulate RM-DCSK in
the AWGN and ARN channels under different spread factors
M and different levels of noise. The transmission data in
each experiment are a randomly generated binary sequence
with 100000-bit length. The bit error rate (BER) between the
received and original data is calculated to demonstrate the
ability of resisting noise.

Two groups of experiments are designed to test the BERs
of RM-DCSK using different chaotic maps as the chaotic
sequence generator. The first group investigates the BERs
against the spread factor M . For each chaotic map, the
experiments are set as follows.

1) Generate an initial state. The initial value is set as
(x0, y0) = (0.1, 0.1) for a 2D chaotic map, and x0 = 0.1
for a 1D chaotic map. The system parameters are select-
ed from the chaotic range of the chaotic map. Specifi-
cally, for a chaotic map with chaotic range (R1, R2) and
interval L, its parameter for the i-th experiment is set
as R1 + iL. Table V lists the used chaotic ranges and
intervals of all chaotic maps in our experiments.

2) Set the noise strength in AWGN and ARN channels as
20 dB. Simulate RM-DCSK in both noisy channels un-
der spread factor M ∈ {10, 20, · · · , 100} and calculate
the BERs.

3) Repeat the steps 1) and 2) 10 times using different initial
states.

4) Calculate the average BERs of the 10 experiments.
Fig. 10 shows the average BERs of RM-DCSK using different
chaotic maps under different spread factors M .
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Fig. 9: Receiver of RM-DCSK.

TABLE V: Chaotic ranges and intervals for different chaotic maps in our
experiments.

Chaotic maps Chaotic ranges Intervals

Hénon map a ∈ (1.16, 1.3] La = 0.014
b ∈ (0.2, 0.4] La = 0.02

Zeraoulia-Sprott map a ∈ (9, 10] La = 0.1
b ∈ (0.6, 0.9] La = 0.03

Duffing map a ∈ (2.3, 2.4] La = 0.01
b ∈ (−0.3,−023] La = 0.007

2D-LSC map [55] a ∈ (0, 1] La = 0.1
LT map [56] µ ∈ (0.5, 1] Lµ = 0.05

Improved â ∈ (5, 105] Iâ = 10

Hénon map b̂ ∈ (5, 105] Lb̂ = 10
Improved â ∈ (5, 105] Lâ = 10

Zeraoulia-Sprott map b̂ ∈ (5, 105] Lb̂ = 10
Improved â ∈ (5, 105] Lâ = 10

Duffing map b̂ ∈ (5, 105] Lb̂ = 10

The second group of experiments investigates the BERs of
RM-DCSK against different levels of noise. The experiments
for each chaotic map are set as follows.

1) Generate an initial state using the same way as the first
group of experiments.

2) Set the spread factor M = 40 and simulate RM-DCSK
under different levels of AWGN and ARN, namely
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Fig. 10: BERs of RM-DCSK using different chaotic maps in the (a) AWGN channel and (b) ARN channel under the spread factor M ∈ {10, 20, · · · , 100}.
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Fig. 11: BERs of RM-DCSK using different chaotic maps in the (a) AWGN channel and (b) ARN channel under the signal noise rate SNR ∈ {0, 1, · · · , 26}.

SRN ∈ {0, 1, · · · , 26}. Calculate the BERs of RM-
DCSK under these levels of noise strength.

3) Repeat the steps 1) and 2) 10 times using different initial
states.

4) Calculate the average BERs of the 10 experiments.

Fig. 11 shows the average BERs of RM-DCSK using different
chaotic maps under different levels of AWGN and ARN.

One can observe from Fig. 10, under different spread factors
M , RM-DCSK can always achieve much smaller BERs when
using the three improved chaotic maps by 2D-MCS than
using the Hénon, Zeraoulia-Sprott, Duffing, 2D-LSC [55] and
LT [56] maps. Fig. 11 shows that when the signal noise ratio
(SNR) is small, RM-DCSK using different chaotic maps can
obtain almost the same BERs. With the increase of SNR,
RM-DCSK can obtain smaller BERs when using the three
improved chaotic maps than using other chaotic maps. This is
because the transmission data have stronger ability of resisting
channel noise when the used chaotic sequences distribute more
uniformly, and the three improved chaotic maps can generate
more uniformly distributed chaotic signals than other chaotic
maps. Thus, the improved chaotic maps by 2D-MCS show
better performance in secure communication than the original

chaotic maps and several recently developed chaotic maps.

VI. CONCLUSION

This paper scrutinized the weaknesses of the existing 2D
chaotic maps. To eliminate the defects, a 2D modular chao-
tification system (2D-MCS) was proposed to improve the
chaos complexity of existing 2D chaotic maps. The 2D-MCS
adopts a modular operation as a simple transformation and
applies it to the system outputs in each iteration. Three exam-
ples of improved chaotic maps were studied to demonstrate
the effectiveness of 2D-MCS. The chaotic behaviors of one
example of 2D-MCS are analyzed using the definition of
LE. The performance evaluations show that the improved
chaotic maps have much wider chaotic ranges and more
complex chaotic behaviors than the original ones. To show the
application of 2D-MCS, we applied the improved chaotic maps
to a secure communication scheme. The experiment results
demonstrate that the improved chaotic maps of 2D-MCS show
better performance in resisting channel noise than the original
chaotic maps and several recently developed chaotic maps.
Our future work will investigate the modular chaotification to
high-dimensional chaotic systems.
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